National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Low-cost microextraction and preconcentration procedures for biomedical applications
Vašátko, Jan ; Diviš, Pavel (referee) ; Dvořák, Miloš (advisor)
This thesis focuses on low-cost microextraction techniques and their application for purification and preconcentration of biological samples, specifically on the experimental study of supported liquid membrane (SLM) extraction. The described microextraction technique uses commercially available filtration plates as the extraction units and allows the extraction of basic drugs from biological samples of urine and blood (in the form of dried blood spots). The experimental part includes the optimization of microextraction conditions of basic drugs from real samples through a SLM coupled in-line to lab-made capillary electrophoresis. The basic optimization of microextraction conditions involved selecting the appropriate organic phase for membrane impregnation (1:1 mixture of ENB and DHE), appropriate agitation speed for sample convection during extraction (1000 rpm), and optimal ratio of donor to acceptor volumes for high preconcentration of the analytes (400:15 µL). After basic optimization, the effect of donor alkalization with NaOH on extraction recovery (ER) was investigated. For all matrices used (saline solution, undiluted human urine samples, human capillary blood eluted from dry blood spots with deionized water), the highest ER values were achieved using a neutral donor and an acidic acceptor. The extraction time (60 minutes) was optimized based on the time profile of the microextraction for 120 minutes. This optimized microextraction method is suitable for the determination of basic drugs in real matrices with sufficient sample clean-up, preconcentration and ER values.
Low-cost microextraction and preconcentration procedures for biomedical applications
Vašátko, Jan ; Diviš, Pavel (referee) ; Dvořák, Miloš (advisor)
This thesis focuses on low-cost microextraction techniques and their application for purification and preconcentration of biological samples, specifically on the experimental study of supported liquid membrane (SLM) extraction. The described microextraction technique uses commercially available filtration plates as the extraction units and allows the extraction of basic drugs from biological samples of urine and blood (in the form of dried blood spots). The experimental part includes the optimization of microextraction conditions of basic drugs from real samples through a SLM coupled in-line to lab-made capillary electrophoresis. The basic optimization of microextraction conditions involved selecting the appropriate organic phase for membrane impregnation (1:1 mixture of ENB and DHE), appropriate agitation speed for sample convection during extraction (1000 rpm), and optimal ratio of donor to acceptor volumes for high preconcentration of the analytes (400:15 µL). After basic optimization, the effect of donor alkalization with NaOH on extraction recovery (ER) was investigated. For all matrices used (saline solution, undiluted human urine samples, human capillary blood eluted from dry blood spots with deionized water), the highest ER values were achieved using a neutral donor and an acidic acceptor. The extraction time (60 minutes) was optimized based on the time profile of the microextraction for 120 minutes. This optimized microextraction method is suitable for the determination of basic drugs in real matrices with sufficient sample clean-up, preconcentration and ER values.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.